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Orio: An Annotation-Based Empirical Performance Tuning
Framework

Overview

Orio is an extensible annotation system, implemented in Python, that aims to improve both performance and
productivity by enabling software developers to insert annotations into their source code (in C or Fortran) that
trigger a number of low-level performance optimizations on a specified code fragment. The tool generates many
tuned versions of the same operation using different optimization parameters, and performs an empirical search for
selecting the best among multiple optimized code variants.

Download

Orio 0.2.1 (alpha) (Open-source license)
Development version (unstable) can be checked out anonymously with:

svn co https://svn.mcs.anl.gov/repos/performance/orio

Contact Boyana Notris if you wish to contribute to Orio development.

Software Requirements

The requirement of instaling and using Orio is Python, which is widely available in any Linux/Unix distribution.
Orio has been tested successfully with Python 2.5 and 2.6 on various Linux distributions, Blue Gene/P and Mac OS
X 10.4 and 10.5.

Quick Install

The Orio installation follows the standard Python Module Distribution Utilities, or Disutils for short.

For users who want to quickly install Orio to the standard locations of third-party Python modules (requiring
superuser privileges in a Unix system), the installation is straightforward as shown below.

% tar -xvzf orio-X.X.X.tar.gz
% cd orio—X.X.X
% python setup.py install

On a Unix platform, the above install command will normally put an orcc script in the /usr/bin location,
and also create an orio module directory in the /usr/1lib/pythonX.X/site-packages location.
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To test whether Orio has been properly installed in your system, try to execute orcc command as given below as
an example.

)

% orcc —--help
description: compile shell for Orio

usage: orcc [options] <ifile>

<ifile> input file containing the annotated code
options:
-h, —-help display this message
-0 <file>, —--output=<file> place the output to <file>
-v, ——-verbose verbosely show details of the results of the running program

In order to install Orio to an alternate location, users need to supply a base directory for the installation. For
instance, the following command will install an orcc script under /home /username /bin, and also put an
orio module under /home/username/lib/pythonX.X/site-packages. The orf script can be used to
generate Fortran code (note that Fortran support is currently under development and is thus limited).

oe

tar —-xvzf orio-X.X.X.tar.gz
cd orio-X.X.X
python setup.py install —--prefix=/home/username

oe

oe

It is also important to ensure that the installed Orio module location is included in the PYTHONPATH environment
variable. Similarly, users can optionally include the installed orcc script location in the PATH shell variable. To
do this for the above example, the following two lines can be added in the .bashrc configuration file (assuming
the user uses Bash shell, of course).

export PYTHONPATH=$PYTHONPATH:/home/username/lib/pythonX.X/site—-packages
export PATH=$PATH:/home/username/bin

Structure of Orio Framework

The picture shown below depicts at a high level the structure and the optimization process of the Orio framework.
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As the simplest case, Orio can be used to speed up code performance by performing a source-to-source
transformation such as loop unrolling and memory alignment optimizations. First, Orio takes a C code as input,
which contains syntactically structured comments utilized to express various performance-tuning directives. Orio
scans the annotated input code and extracts all annotation regions. Each annotation region is then passed to the code
transformation modules for potential optimizations. Next, the code generator produces the final code with various
optimizations being applied.

Furthermore, Orio can also be used as an automatic performance tuning tool. The system uses its code
transformation modules and code generator to generate an optimized code version for each distinct combination of
performance parameters. And then, the optimized code version is empirically executed and measured for its
performance, which is subsequently compared to the performances of other previously tested code variants. After
iteratively evaluating all code variants under consideration, the best-performing code is generated as the final
output of Orio.

Because the space of all possible optimized code versions can be exponentially large, an exhaustive exploration of

the search space becomes impractical. Therefore, several search heuristics are implemented in the search engine
component to find a code variant with near-optimal performance.
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The tuning specifications, written by users in the form of annotations, are parsed and used by Orio to guide the
search and tuning process. These specifications include important information such as the used compilers, the
search strategy, the program transformation parameters, the input data sizes, and so on.

User Guide

As previously discussed , Orio has two main functions: a source-to-source transformation tool and an automatic
performance tuning tool. In the following subsections, simple examples are provided to offer users the quickest
way to begin using Orio. But first, a brief introduction to the annotation language syntax is presented next.

Annotation Language Syntax

Orio annotation is denoted as a stylized C comment that starts with '/ *@" and ends with @* /. For instance, the
annotation /*@ end @*/ is used to indicate the end of an annotated code region. The following simple grammar
illustrates the fundamental structure of Orio annotations.

<annotation-region> ::= <leader-annotation> <annotation-body> <trailer-annotation>
<leader-annotation> ::= /*@ begin <module-name> ( <module-body>) @*/
<trailer-annotation> ::= /*@ end @*/

An annotation region consists of three main parts: leader annotation, annotation body, and trailer annotation. The
annotation body can either be empty or contain C code that may include other nested annotation regions. A leader
annotation contains the module name of the code transformation component that is loaded dynamically by Orio. A
high level abstraction of the computation and the performance hints are coded in the module body inside the leader
annotation and are used as input by the transformation module during the transformation and code generation
phases. A trailer annotation, which has a fixed form (i.e. /*@ end @*/), closes an annotation region.

A concrete example of an annotated application code can be seen in the next subsection.

Using Orio as a Source-to-Source Code Transformation Tool

Orio has several code transformation module that have already been implemented and are ready to use. One of the
transformation modules is loop unrolling, which is a loop optimization that aims to increase register reuse and to
reduce branching instructions by combining instructions that are executed in multiple loop iterations into a single
iteration. The below sample code demonstrates how to annotate an application code with a simple portable loop
unrolling optimization, where the unroll factor used in this example is four. The original code to be optimized in
this example is commonly known as AXPY-4, which is an extended version of the AXPY Basic Liner Algebra
Subprogram.

/*@ begin Loop (
transform Unroll (ufactor=4)
for (i=0; 1i<=N-1; i++)

yv[i] = y[i] + al*x1[i] + a2*x2[1] + a3*x3[1] + ad*x4[i];
) @x/
for (i=0; 1i<=N-1; i++)
y[i] = yv[i] + al*x1[1i] + a2*x2[1] + a3*x3[1i] + ad*x4[i];
/*Q@ end @*/

In order to apply loop unrolling to the above code, run the following Orio command (assuming that the annotated
code is stored in the file axpy4 . c).
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)

% orcc axpyvé.c

By default, the transformed output code is written to the file _axpy4 . c. Optionally, users can specify the name of
the output file using the command option —o <file>. Below is how the output code looks like.

/*@ begin Loop (
transform Unroll (ufactor=4)
for (i=0; 1i<=N-1; i++)
yv[i] = y[i] + al*x1[i] + a2*x2[1] + a3*x3[1] + ad4*x4[i];
) @x/
#if ORIGCODE
for (i=0; 1i<=N-1; i++)

y[i] = y[i] + al*x1[i] + a2*x2[1i] + a3*x3[1i] + ad*x4[i];
#else
for (i=0; 1i<=N-4; i=i+4) {

y[i] = y[i] + al*x1[i] + a2*x2[i] + a3*x3[1] + ad4*x4[1i];

y[i+1l] = y[i+1l] + al*x1[i+1l] + a2*x2[i+1l] + a3*x3[i+1l] + a4d4*x4[i+1]
vl

vl

-
+
N

|

= y[i+2] + al*x1[i+2] + a2*x2[1i+2] + a3*x3[1+2] + ad*x4[1i+2];
[1+3] + a2*x2[1+3] + a3*x3[1+3] + ad4*x4[i+3];

b
+
w

I

y[i+3] + al*x1

for (; i<=N-1; i=i+1)
yv[i] = y[i] + al*x1[i] + a2*x2[1] + a3*x3[1] + ad*x4[i];
#endif
/*Q@ end @*/

In this AXPY-4 example, the name of the code transformation module used to perform loop unrolling is Loop. The
AXPY-4 computation is rewritten in the module body along with the loop unrolling performance hints (i.e. an
unroll factor of four). The resulting unrolled code comprises two loops: one loop with the fully unrolled body, and
another loop for any remaining iterations that are not executed in the unrolled loop. Additionally, the generated
code include the original code (initially written in the annotation body area) that can be executed through setting the
ORIGCODE preprocessor variable accordingly.

More examples on using Orio's source-to-source transformation modules are available in the orio/testsuite
directory, which can also be browsed online here.

Using Orio as an Automatic Performance Tool

To enhance the performance of a program on target architecture, most compilers select the optimal values of
program transformation parameters using analytical models. In contrast, Orio adaptively generates a large number
of code candidates with different parameter values for a given computation, followed by empirical executions of
these code variants on the target machine. Then the code that yields the best performance is chosen. Orio automates
such empirical performance tuning process using annotations, as exemplified in the following simple program.

/*@ begin PerfTuning (
def build {
arg build_command = 'gcc -03';
}
def performance_params {
param UF[] = range(1l,33);
}
def input_params {
param N[] = [1000,10000000];
}
def input_vars {
decl static double y[N] = 0;
decl double al = random;
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decl double a2

random;

decl double a3 = random;
decl double a4 = random;
decl static double x1[N] = random;
decl static double x2[N] = random;
decl static double x3[N] = random;
decl static double x4 [N] = random;
}
) @*/
int i;

/*@ begin Loop (
transform Unroll (ufactor=UF)
for (i=0; 1i<=N-1; i++)

yv[i] = y[i] + al*x1[i] + a2*x2[1] + a3*x3[1] + ad*x4[i];
) @x/
for (i=0; 1i<=N-1; i++)
yv[i] = y[i] + al*x1[i] + a2*x2[1] + a3*x3[1] + ad*x4[i];
/*Q@ end @*/
/*Q@ end @*/

The tuned application in the given example is the same AXPY-4 used in the earlier subsection. The goal of the
tuning process is to determine the most optimal value of the unroll factor parameter for different problem sizes. The
code located in the Per f Tuning module body section defines the funing specifications that include the following
four basic definitions:

® build: to specify all information needed for compiling and executing the optimized code

® performance_params: to specify values of parameters used in the program transformations
e input_params: to specify sizes of the input problem

e input_vars: to specify both the declarations and the initializations of the input variables

So in this example, the transformed AXPY-4 code is compiled using GCC compiler with the -O3 option to activate
all its optimizations. The unroll factor values under consideration extends over integers from 1 to 32, inclusively.
The AXPY-4 computation is tuned for two distinct problem sizes: N=1K and N=10M. Also, all scalars and arrays
involved in the computation are declared and initialized in the tuning specifications to enable the performance
testing driver to empirically execute the optimized code.

As discussed before, Orio performance tuning is performed for each different problem size. The number of
generated programs is therefore equivalent to the number of distinct combinations of input problem sizes. So, there
are two generated program outputs in the AXPY-4 example. Using the default file naming convention,
_axpy_N_1000.cand _axpy_N_10000000. c output files represent the outcomes of Orio optimization
process for input sizes N=1K and N=10M, respectively.

See this documentation for more details about the Orio's performance tuning specifications.

Selecting Parameter Space Exploration Strategy

A conceptually straightforward approach to exploring the space of the parameter values is via an exhaustive search
procedure. However, this exhaustive approach often becomes infeasible because the size of the search space can be
exponentially large. Hence, a proper search heuristic becomes a critical component of an empirical tuning system.
In addition to an exhaustive search and a random search, two effective and practical search heuristic strategies have
been developed and integrated into the Orio?s search engine. These heuristics include the Nelder-Mead Simplex
method and Simulated Annealing method. The exhaustive approach is selected as the default space exploration
method of Orio; however, Orio user can indicate his preferred search strategy in the tuning specifications, for
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instance, using the following search definition.

def search {

arg

algorithm = 'Simplex';

arg time_limit = 10;

arg total_runs
arg simplex_local_distance

arg simplex_reflection_coef
arg simplex_expansion_coef = 2.5
arg simplex_contraction_coef = 0
arg simplex_shrinkage_coef = 0.7

10;

= 2=

=1.5;
.6;

’

Orio users can also specify the terminating criteria of the search strategies by providing values to the arguments
time_limit and fotal_runs. If the search time exceeds the specified time limit, the search is suspended and then Orio
returns the best optimized code so far. The total number of runs enforces the search to finish in a specific quantity
of full search moves. So, the example above indicates that the Simplex search method must terminate within
ten-minute time constraint and within ten search convergences.

A search technique sometimes has several parameters that need to be specified. For instance, the Nelder-Mead
Simplex algorithm necessitates four kinds of coefficients: reflection, expansion, contraction, and shrinkage; and all
of these coefficients have default values already defined in the Orio implementation. To alter the values of these
algorithm-specific parameters, users can optionally specify them in the tuning specifications. In the example
presented above, all arguments with names that start with simplex_ are called search parameters specifically
designed to steer the Simplex algorithm.

To further improve the quality of the search result, each search heuristic is enhanced by applying a local search
after the search completes. The local search compares the best performance with neighboring coordinates. If a
better coordinate is discovered, the local search continues recursively until no further improvement is possible. In
the previous example, users can adjust the distance of the local search by modifying the value of the argument
simplex_local_distance. A local distance of two implies that the local search examines the performances of all
neighbors within a distance of two. It is important to note that the local search is turned off by default for all search
heuristics. Thus to activate the local search, Orio users must explicitly assign a positive integer value to the
local_distance algorithm-specific argument.

The following table lists information about the search techniques implemented in the Orio's search engine.

Search
technique

Exhaustive

Random

Nelder-Mead
simplex

Keyword

'Exhaustive'
'Random’

'Simplex’

Algorithm-specific argument

local_distance

local_distance
reflection_coef
expansion_coef
contraction_coef
shrinkage_coef

Selecting Parameter Space Exploration Strategy

Default
value

1.0
2.0
0.5
0.5

Argument description

* the maximum distance of
neighboring coordinates
considered by the local search

* the maximum distance of
neighboring coordinates
considered by the local search
* the amplitude/intensity of the
reflection move

* the amplitude/intensity of the
expansion move

* the amplitude/intensity of the



contraction move
* the amplitude/intensity of the
shrinkage move

* the maximum distance of
neighboring coordinates
considered by the local search
* the temperature reduction

local_distance 0 factor
Simulated cooling_factor 0.95 * the percentage of the
. 'Annealing’ final_temperature_ratio 0.05 termination temperature
annealing , o . -
trials_limit 100 * the maximum limit of numbers
moves_limit 20 of search trials at each
temperature

* the maximum limit of numbers
of successful search moves at
each temperature

Developer Guide

This section covers topics on how to extend Orio with new features and components such as program
transformation modules.

Writing a New Code Transformation Module

With the module name provided in the leader annotation, Orio dynamically loads the corresponding code
transformation module and uses it to transform and generate the code in the annotation body block. If the pertinent
module cannot be found in the Orio module directory, an error message is produced, and the Orio optimization
process is terminated. Such name-based dynamic loading provides flexibility and easy extensibility without
requiring detailed knowledge or modification of the existing Orio system.

Since Orio implementation is all in Python, to construct a new program transformation module therefore requires a
Python programming skill. Transformation module writers need to create a new Python module inside
src/module directory, where the abstract base class of the code transformation modules is available. This
abstract class provides a partial implementation of the source-to-source transformation process, leaving it to
subclasses to complete the implementation. The program below displays the abstract class code that inherits a class
constructor and an abstract transformation function to its subclasses. Information about the class attributes is
included in the code below as well.

#
# File: src/module/module.py
#

class Module:
'''"The abstract class of Orio's code transformation module'''

def __init__ (self, perf_params, module_body_code, annot_body_code, cmd_line_opts, line_no, indent_:

The class constructor used to instantiate a program transformation module.
The following are the class attributes:

perf_params a table that maps each performance parameter to its wvalue
module_body_code the code inside the module body block
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annot_body_code the code contained in the annotation body block

cmd_line_opts information about the command line options

(see src/main/cmd_line_opts.py for more details)
line_no the starting line position of the module code in the source code
indent_size an integer representing the number of whitespace characters that

preceed the leader annotation
T

self.perf_params = perf_params
self.module_body_code = module_body_code
self.annot_body_code = annot_body_code
self.cmd_line_opts = cmd_line_opts
self.line_no = line_no

self.indent_size = indent_size

def transform(self):
T

The main code transformation procedure. The returned value is a string value that

represents the transformed/optimized code.
LI B

raise NotImplementedError ('%s: unimplemented abstract function "transform"' %
(self.__class_ _._ _name_ ))

Among all the class attributes, three of them are very important in generating optimized code: performance
parameters, module body code, and annotation body code. Performance parameters are information essential for
performing code optimization and generation, such as unroll factor and tile size. These parameters are stored in a
hashtable to facilitate quick accesses to parameter values. The code contained in the module body block normally
outlines the applied optimization techniques and, possibly, the high level description of the computation itself. In
order to extract this information, new language syntax and a corresponding parser component must be implemented
for each transformation module. In addition, the annotation body code, currently expressed in C language, can
electively be parsed and given as input to the transformation module.

In the earlier AXPY-4 case, one could view the module body block as redundant, since the annotation body already
contains the same program. The motivation behind requiring Orio users to include the computation itself as part of
the annotation is to avoid making use of a full-fledged C compiler infrastructure that potentially will compromise
the simplicity, reliability, and portability of Orio. Furthermore, another reason is to allow the computation to be
expressed by using domain-specific high-level languages, thus capturing the semantics without imposing tuning
constraints resulting from the use of a general-purpose language.

Below, we present a very simple example, which extends Orio with a new module that simply rewrites the
annotated code without applying any code transformations at all. The new module has no parser component since
there is no necessity to extract information from the annotated code, significantly simplifying the module
implementation. First, we need to create a new subdirectory (with a name simplyrewrite, for instance) inside
src/module. And then, we create an empty special file __init__ .py inside directory
src/module/simplyrewrite, so that Python will know that this folder is a package (i.e. a Python module).
After that, a file named simplyrewrite.py that contains the implementation of the transformation module
class must be defined in directory src/module/simplyrewrite. So, here is how the new directory structure
will look like after adding the new transformation module extension to Orio.

)

% pwd
/home/username/orio
% tree src/module/
src/module/

|-— __init__ .py

| -— module.py
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‘—— simplyrewrite
|-— __init__ .py
‘—— simplyrewrite.py

1 directories, 4 files

And, below is the detailed code of the SimplyRewrite class.

#
# File: src/module/simplyrewrite/simplyrewrite.py
#

import module.module

class SimplyRewrite (module.module.Module) :
''"'"A simple rewriting module'''

def __init__ (self, perf_params, module_body_code, annot_body_code, cmd_line_opts, line_no, indent_:
''"'"To instantiate a simple rewriting module'''
module.module.Module.__init__ (self, perf_params, module_body_code, annot_body_code,

cmd_line_opts, line_no, indent_size)

def transform(self):
''"'"To simply rewrite the annotated code'''

# to create a comment containing information about the class attributes

comment = '"''

/*

perf_params = %s
module_body_code = "%s"
annot_body_code = "&%s"
line_no = %s
indent_size = %s

*/

LI I B

% (self.perf_params, self.module_body_code, self.annot_body_code, self.line_no, self.indent

# to rewrite the annotated code, with the class-attribute comment being prepended
output_code = comment + self.annot_body_code

# to return the output code
return output_code

In the following, we show the input and output of the newly-added SimplyRewrite module.

)

% cat simplyrewrite.py

/*@ begin SimplyRewrite (This is the module body code) @*/
// This is the annotation body code

/*Q@ end @*/

% orcc —-v simplyrewrite.py
====== START ORIQ ======

————— begin reading the source file: simplyrewrite.py --———-—
————— finish reading the source file ————-

————— begin parsing annotations —--———-
————— finish parsing annotations —---——-—

————— begin optimizations —--———-
————— finish optimizations —--———-
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————— begin writing the output file(s) —-———-
-—> writing output to: _simplyrewrite.py
————— finish writing the output file(s) —-———-

% cat _simplyrewrite.py
/*@ begin SimplyRewrite (This is the module body code) @*/

/*
perf_params = {}
module_body_code = "This is the module body code"

annot_body_code = "
// This is the annotation body code

line_no =1

indent_size = 0

*/
// This is the annotation body code
/*Q@ end @*/

Additional Documentation
¢ Performance Tuning Specifications

Tools Using Orio

® Pluto -- An automatic parallelizer and locality optimizer for multicores
¢ PrimeTile -- A parametric multi-level tiler for imperfect loop nests

Papers

¢ Albert Hartono, Boyana Norris, and Ponnuswamy Sadayappan. Annotation-based empirical performance
tuning using Orio. In Proceedings of the 23rd IEEE International Parallel & Distributed Processing
Symposium, Rome, Italy, May 25-29, 2009. To appear. (Preprint ANL/MCS-P1556-1008, bib)

® Boyana Norris, Albert Hartono, and William Gropp. "Annotations for Productivity and Performance

Portability," in Petascale Computing: Algorithms and Applications. Computational Science. Chapman &
Hall / CRC Press, Taylor and Francis Group, 2007. (Preprint ANL/MCS-P1392-0107, bib)
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